Al-fueled FPV Goggles with Mobile Device and VR Headset

Presenter

Sydney Brown Barnard College skb2183@barnard.edu

Mentor

Qing Su Georgia State University qsu3@student.gsu.edu Advisor

Dr. Shihao Ji Georgia State University sji3@gsu.edu

Context

- Drone technology is used for professional and recreational purposes
- FPV Goggles allow users to immerse themselves in a drone's view
- Existing FPV goggles are expensive additional hardware
- Creating robust FPV goggles on mobile would allow casual users to immersively view drone video

Research Problem

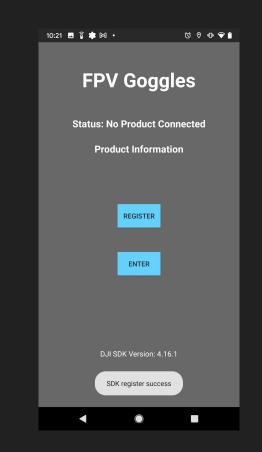
How to access and convert monocular video footage from a drone into stereo video and display it on a mobile phone device?

Turning Monocular Video into Stereo Video

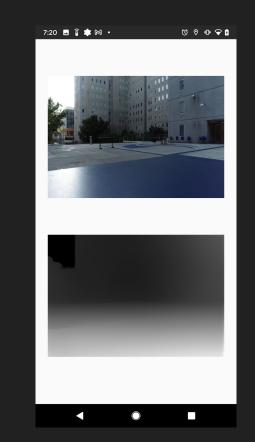
- Principle of parallax in human vision
- VR uses parallax to create perception of depth
- One way to create stereo video involves filming at multiple views
- With only monocular video, must extrapolate depth information
- Can use depth information to construct stereo video

Monocular Depth Estimation

- Topic of research in area of Computer Vision
- Ill-posed problem of generating a depth map of a single RGB image ¹
- Solutions often computationally expensive, involving large CNNs¹


Image frame

Implementation


Set Up and Integration with DJI SDK

- Hardware used for testing:
 - DJI Phantom 4 Pro V2
 - Android Pixel 2 XL
 - Google Daydream
- Create app registering DJI SDK and connecting to drone ²
- Access and display the live video feed from the drone ²

Implementing Depth Estimation

- Access video frames from the drone's video feed
- Use TensorFlow Lite to load and run MiDaS depth estimation model ³
- Process input to required format for Tensors⁴
- Process output into a depth map represented by a grayscale image

Creating Second View

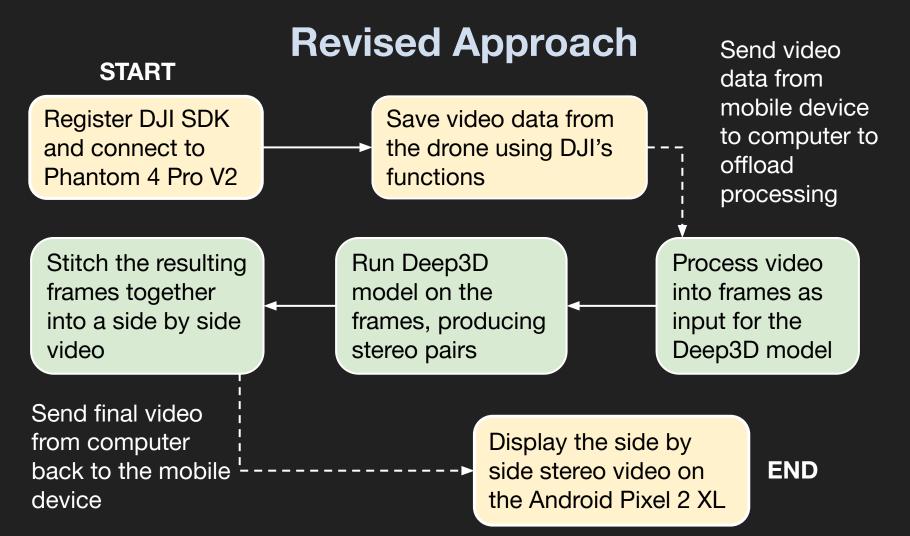
- Attempted to implement methods for creating the stereo pair on mobile
- First method split image into layers based on depth and shifted them ⁵
- Second shifted individual pixels according to depth ⁶
- Issues with resulting frames
- Not feasible to carry out this processing for 30 fps

Original frame

Other view using first method

Other view using second method

Initial Approach


START

Register DJI SDK and connect to Phantom 4 Pro V2 Get video data from the drone using DJI's functions Run MiDaS Depth Estimation model on each frame

END

Stitch together and display resulting stereo video

Use depth map to construct second view

Offloading Video and Processing

- Download video data from drone
- Deep3D model for producing stereo pair from single image ⁷
- Process video into frames on the computer ⁸
- Run Deep3D on the input frames ⁸
- Stitch back together output as side by side stereo video ⁸

Final Result

Conclusions and Future Work

- Implemented FPV Goggles on mobile device
- Due to expense of image processing and model inference, decided to offload this work
- Future work could develop lightweight, efficient model for mobile
- Potential to implement Deep3D as a TensorFlow Lite model to run directly on mobile
- Improve rendering of final result on mobile

References

- 1. C. Q. Zhao, Q. Y. Sun, C. Z. Zhang, Y. Tang, and F. Qian, "Monocular depth estimation based on deep learning: An overview," Science China Technological Sciences, vol. 63, 2020.
- 2. oliverou, H. Vo, mrjzhao, and DJI-William, Android FPV Demo. DJI, 2022. [Online]. Available: https://github.com/DJI-Mobile-SDKTutorials/Android-FPVDemo.
- 3. R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, "Towards robust monocular depth estimation: Mixing datasets for zero-shot crossdataset transfer," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 3, pp. 1623–1637, 2022.
- 4. A. Shekhar, "Android tensorflow lite example," 2019. [Online]. Available: https://github.com/amitshekhariitbhu/Android-TensorFlowLite-Example.
- 5. strikeraryu, "Parallax image," Medium, 2020. [Online]. Available: https://medium.com/analytics-vidhya/parallax-images-14e92ebb1bae.
- 6. J. Zimandl, "Stereo photo from depth photo," STRV, 2019. [Online]. Available: https://www.strv.com/blog/stereo-photo-from-depthphoto-engineering-ios.
- 7. J. Xie, R. Girshick, and A. Farhadi, "Deep3d: Fully automatic 2dto-3d video conversion with deep convolutional neural networks," in Computer Vision ECCV 2016, vol. 9908 LNCS, pp. 842–857, Springer International Publishing, 2016.
- 8. HypoX64, "Deep3d," 2022. [Online]. Available: https://github.com/HypoX64/Deep3D.

NSF Grant #1852516

Presenter

Sydney Brown Barnard College skb2183@barnard.edu

Mentor

Qing Su Georgia State University qsu3@student.gsu.edu Advisor

Dr. Shihao Ji Georgia State University sji3@gsu.edu

AI-fueled FPV Goggles with Mobile Device and VR Headset

Sydney Brown Barnard College skb2183@barnard.edu Qing Su Georgia State University qsu3@student.gsu.edu

Shihao Ji Georgia State University sji@gsu.edu

NSF Grant #1852516

Introduction

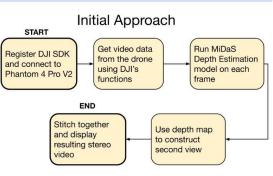

- FPV Goggles provide an immersive format of viewing drone footage
- True stereo video includes two views which account for parallax
- Neural networks can be used to produce depth maps from a single RGB image
- How can we create FPV goggles on a mobile device, accounting for parallax?

Figure 1. First row left to right: original image from drone, generated depth map Second row: two versions of creating second view using different shifting methods

Implementation

Revised Approach

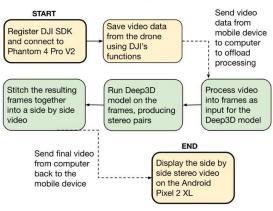


Figure 2. Some resulting stereo frame pairs generated from Deep3D

Conclusion

- Due to the processing power of the mobile phone, approach shifted to offloading model inference and video processing
- The final result (example frames displayed in Figure 2) can be displayed on mobile and viewed on the VR headset
- Future work could create lightweight, efficient depth estimation models for mobile
- Could implement Deep3D in TensorFlow Lite and directly deploy the model on mobile