Neuroevolution for NPC Fighting

Asher Uman
Department of Computer Science
Smith College
Northampton, Massachusetts
auman @smith.edu

Abstract—This paper tests the flexibility of an already estab-
lished neuroevolution method for improving the performance
of non-player video game characters. We use the same neural
network with weights evolved through a genetic algorithm on
multiple non-player characters and across multiple computers.
This allows us to compare the results and see if the same
neuroevolution is effective across multiple situations in the
context of one game.

Index Terms—neural networks, genetic algorithm, neuroevo-
lution, games

I. INTRODUCTION

Neuroevolution, or the process of evolving an Artificial
Neural Network (ANN) through genetic algorithms, has been
proven to be a competitive, and in some cases superior [1],
method of generating a strong ANN, even when compared
to more popular gradient descent-based techniques, such as
backpropagation. Neuroevolution is especially effective for
Al problems with sparse rewards, such as games where the
success of a single move is difficult to evaluate until a winner
is determined. In order to further study the viability of neu-
roevolution in such an environment, we conducted experiments
through a game where two characters must fight against each
other, as in [2]. By varying the types of characters evolved and
running the game across different machines, we attempted to
see if there were any noticeable differences in how the ANN
evolved in different environments.

The game is structured like a classic fantasy adventure
game, where the player character must traverse a dungeon
and fight various enemies in order to complete a goal. For
the purposes of testing and training the neural network, we
restricted the gameplay to a “tournament mode”, where the
player character is restricted to a single room, controlled by
a simple, hard-coded strategy, and fights thousands of battles
against an opponent character, who is controlled by the neural
network. Over the course of a “tournament”, the weights of
the network are progressively evolved by means of a genetic
algorithm, which evaluates each fight and identifies the most
successful individuals from each generation. New weights for
the neural network are then produced from these individuals
by using crossover and random mutation. By repeating this
process, the algorithm is able to evolve even more successful
individuals.

Thanks to NSF Grant 1852516 for supporting this project.

Jace Clowdus
School of Cinematic Arts
University of Southern California
Los Angeles, California
jclowdus @usc.edu

Michael Weeks
Department of Computer Science
Georgia State University
Atlanta, Georgia
mweeks @ieee.org

Fig. 1. A screenshot of the game, with the “player” character, a wizard,
fighting against the neural network controlled ogre.

II. RELATED WORK

Video games are a well-established environment for re-
inforcement learning (RL) research. The Arcade Learning
Environment, a framework which allows for the creation of
Al agents that can play Atari 2600 games [3], established the
ability to perform well in Atari as a benchmark problem for RL
agents, and has been extensively used by others in the field in
order to experiment with different RL algorithms, and attempt
to create agents that can perform well in many Atari games [4].
Many RL agents trained to play these games have implemented
gradient-based algorithms, but neuroevolution has been shown
to be a competitive alternative. Genetic algorithms perform
better than other established RL algorithms on some games,
and are overall faster to train [1].

Neural networks have also been trained to play a variety of
other games, often using neuroevolution as well. NeuroEvolu-
tion of Augementing Topologies (NEAT), has been applied
to games such as Flappy Bird [5] and Top Gear [6] with
successful results. The success of neuroevolution in SNES
games such as Top Gear is especially promising, as even highly
competent gradient-based algorithms that perform well on
Atari have struggled with the more complex environments of
SNES titles. Agents controlled by an algorithm that combined
neuroevolution with backpropagation also performed better

and more efficiently than backpropagation alone in the game
Quake II [7].

Neuroevolution also seems to be a promising solution for
the problem of creating more engaging, human-like non-player
characters in games. Genetically evolved agents behaved in a
more human-like manner in the game Super Mario Bros [8],
and were judged by human players to be more challenging and
engaging opponents in the fighting game M.U.G.E.N. [9]. This
is important because a more human-like non-player character
is more capable of immersing the player in a game than one
that is clearly artificial.

Previous work on this project involved the creation of
an original game and game engine in which to implement
neuroevolution, as opposed to training a neural network to play
an existing game. Due to this, modifications can more easily be
made to the game, including the editing or creation of different
characters and their weapons. This also brings us closer to the
eventual goal of most research in game neuroevolution: the
purposeful use of convincing Al agents within a game, instead
of simply training an agent to play or take on some other role
within an existing game. Previously, we also experimented
with the number of layers in the neural network, leading to
our current setup of a five-layer network [10]. The inclusion
of feeding the agent’s previous output back to it as an input
was also shown to improve results, and we further refined the
inputs of the ANN within this paper. The main purpose of our
current work was to expand on and continue to experiment
with our previously created game and agent.

III. RESEARCH ACTIVITIES

A. Hardware and Software Description

The source code for this experiment was created mainly in
Java, with some functionality added through PHP and Bash
scripts. The program was run on three machines. Machine 1
is a 2017 Apple Macintosh running macOS 10.14.6, with a 3.2
GHz Intel Core i5, and 8 GB of RAM. Machine 2 is a Lenovo
ThinkBook 14 running Windows 11 with an x64-based AMD
Ryzen 7 at 1.80 GHz, and 16 GB of RAM. Machine 3 is a
Dell G15 5510 running Windows 11 with an x64-based Intel
Core i7-10870H processor at 2.2GHz and 16 GB of RAM.

B. Running the Software

The tournament was run through a Bash script, which ran
in "steps”. Each step runs 100 generations of the tournament,
and each generation is composed of 50 matches between the
player and ANN. The top 50 results from each generation are
then saved in a XML file. Each match, the neural network-
controlled enemy is scored on its performance, which is based
on the remaining health of both the player and the enemy.
These scores are then used to assess the fitness of each
population in order to find parents for the next generation of
the genetic algorithm, thus improving the performance of the
enemy.

#!/bin/bash
i

declare -i step=1
declare -i max=10
MAXT=50
MAXG=100

while
do

run tournament

java maze 2d include_states no_graphics -t $MAXT -g $MAXG > S$fname

sort the results

java maze -s

keep only top 50

grep -n "<RESULTS>" NNdataTop50.xml > NNrecstart.txt

What line number does record 51 start with?

((step <= max))

stopline=‘awk -F: 'NR == 51 { print $1 }’ NNrecstart.txt'
print all lines up to $stopline
awk -v SL=$stopline 'NR < SL { print $0 }’ NNdataTop50.xml > realtop50.xml
Make a backup copy of the old version
mv NNdata.xml "NNdata_S$step.xml"
cp realtop50.xml NNdata.xml
mv realtop50.xml NNdataTop50_$step.xml
Clobber NNdataTop50.xml so that we do not append more to it.
rm NNdataTop50.xml
((step ++))
done

Fig. 2. An example of the Bash script that runs the tournament.

C. Constructing the Neural Network

We constructed our neural network with combat in mind,
and as such the inputs and outputs are specifically geared
towards combat, although not towards any specific character.
For our inputs we used the opponent character’s distance
to the player, whether or not the player was recently hit,
whether or not the opponent was recently hit, the opponent’s
remaining health, whether the opponent is currently shielding,
the opponent’s distance to an enemy projectile, whether the
opponent is colliding with a target, what the opponent did
last, and a bias weight. These inputs are then run through five
processing layers (with nine neurons each) which then output
the opponents next action. These are ”Choose” (waits to find a
different action), "Close” (gets closer to the player), ”Charge”
(gets closer to the player at double speed), “Backup” (gets
away from the player), “Retreat (gets away from the player
at double speed), “Check” (moves towards the player with
shield up), ’Special” (uses a slow but powerful attack), "Hold”
(stays in place and shields), “Ignore” (ignores the player),
”Zig” (moves towards the player at a +45 degree angle), and
”Zag” (moves towards the player at a -45 degree angle). This
significantly reduced the size of our previous network, but does
not seem to impact training, suggesting that it is possible to
create a competent agent for games with a minimal number
of inputs.

Inputs

Neuron Layers

Outputs

Distance to Player ~ Choose

Was the Character Recently Stunned, - > Close
Hurt, or Knocked Back? A#y
) » Charge

Was the Opponent Recently Stunned, “##i
Hurt, or Knocked Bac! » Backup

Remaining Health) - Retreat

N - Check
Is the Opponent Shielding?
/ - Special

Distance to Enemy Projectile) - Hold

Is the Character Colliding With a Target? - Ignore
- zig
What Did The Character Do Last?) . 2

Bias Weight) - Attack

Fig. 3. A diagram of the inputs, processing layers, and outputs of our neural
network.

D. Character Creation

For the purposes of testing neuroevolution on multiple
characters, we created two new characters, the fire wizard
and the bird, for a total of three when including the ogre.
In order to properly test the flexibility of our neuroevolution,
we designed these characters to have different strengths and
weaknesses. Ideally, they would need to use different strategies
in order to win, showing that our neural network is capable
of creating different strategies depending on the scenario.

The first is one that already existed: the ogre. The ogre is a
slow, large monster that is powerful up close. It wields a large
hammer for close range and a sling for long range. Crucially,
the sling is much less powerful than the ranged weapon the
player has, meaning that relying on it alone would likely be
an ineffective strategy for the ogre. The ogre’s hammer, on
the other hand, is a very powerful weapon, easily capable of
out-damaging the player. In theory, the most effective strategy
for the ogre would be to get in close and use its hammer to
quickly dispatch the player.

The second character is the fire wizard. The fire wizard
is a longer range character, but also has tools for up-close
combat. They have a ranged fireball attack for distance and
can surround themselves with flame (that only damages the
player) at close range. The ideal strategy would be to shoot
fireballs while far away and surround themselves with flame
closer up. This is unique to our neural network because the
character has two equally viable tools to deal with the enemy,
so it must recognize which situations to use each one in instead
of relying exclusively on one or the other.

The final character we added to the game is the bird. The
bird is a small, fast character that can only fight up close. It
wields a short spear that it can use to attack in front of itself.
Unlike the other characters, the bird does not have a ranged
attack, meaning its only option for combat is to put itself in
a dangerous situation by getting close to the player. Its main
advantage is its speed, which is higher than that of both the
player and the other two enemies. The strategy we had in mind
while designing it is one where it flies up close to the player,
attacks, and retreats so that it does not get hit, over and over
again. This challenges the neural network to go back and forth
between different outputs as it repeats the attack cycle.

Fig. 4. (Left to right) The bird, fire wizard, and ogre as they appear in game.

E. Running the Tournament on Multiple Systems

After fixing some bugs, the tournament was able to run
with identical performance on all three different machines.

The program formats the results the same way regardless of
machine, meaning that it is simple to take previous training
from one machine and use it on another.

F. Issues and Limitations

We ran into a few issues while trying to run tests. Firstly,
we had trouble even getting the tests to run at all, although
that is now fixed. Because of the time it took to fix that, we
ended up with much less time to actually run tests. This is an
issue because properly evolving the neural network can take
upwards of days and weeks. Because of this, we decided to
limit our tests to only two characters: the ogre and fire wizard.

Additionally, we ran into an issue with the scoring very late
into our research. The fire wizard is consistently getting scores
far above what should be the maximum score. The character
is winning consistently, but we cannot say with certainty that
its scores are accurately reflecting its performance.

G. Initial Results

Due to the issues outlined in the previous section, and the
fact that the majority of our research being spent on expanding
the game and making it run successfully on different machines,
we were unable to obtain conclusive results or data on all
of our characters. However, initial results seem to suggest
that while there is no noticeable difference between different
machines, some of the new characters, and possibly the fitness
function itself, may need to be re-balanced. Future work is
needed to fully answer the question of how an agent’s perfor-
mance differs across characters, machines, and situations.

IV. CONCLUSION

This paper takes an already-existing neuroevolution method
and improves it, laying the groundwork for future work testing
its flexibility more thoroughly. We adapted our previous neural
network to be more efficient by reducing the number of inputs.
We then add two more characters: the fire wizard and the bird.
We also modified the existing software to work effectively
on multiple machines, and across operating systems. In this
work, we lay the groundwork for a flexible, extensible way to
test neuroevolution across machines, with easily addable and
modifiable characters, and that is usable on multiple operating
systems.

Continued research is needed to look into possible issues
with evaluating the fitness of the characters, particularly the
fire wizard. Given the fire wizard’s strength, it likely should
be balanced to be weaker. Future work should also include
adding additional characters to see if neuroevolution works
effectively for them as well. Additionally, we only tested each
of our three non-player characters against a standard “human
fighter” player character with a set strategy. An intriguing
option for future study would be to see how different ANN
characters evolve against opponents with differing abilities and
strategies. Another interesting possibility would be to pit two
ANN-controlled characters against each other, and evolve them
both in response to their battles with each other.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

REFERENCES

F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O.
Stanley, and J. Clune, “Deep neuroevolution: Genetic
algorithms are a competitive alternative for training deep
neural networks for reinforcement learning,” 12 2017.
[Online]. Available: http://arxiv.org/abs/1712.06567

M. Weeks, D. Binnion, A. C. Randall, and V. Pa-
tel, “Adventure game with a neural network controlled
non-playing character,” 16th IEEE International Confer-
ence on Machine Learning and Applications, vol. 2017-
December, pp. 396-401, 2017.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling,
“The arcade learning environment: An evaluation plat-
form for general agents,” Journal of Artificial Intelligence
Research, vol. 47, pp. 253-279, 6 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
atari with deep reinforcement learning,” 12 2013.
[Online]. Available: http://arxiv.org/abs/1312.5602

T. Ramaswamy, Y. Pranati, C. V. S. Lahari, and S. San-
jana, “Teaching ai to play games using neuroevolution
of augmenting topologies,” International Journal of In-
novative Science and Research Technology, vol. 7, pp.
1143-1145, 3 2022.

S. Pham, K. Zhang, T. Phan, J. Ding, and C. L. Dancy,
“Playing snes games with neuroevolution of augmenting
topologies,” 32nd AAAI Conference on Artificial Intelli-
gence, vol. 32, pp. 8129-8130, 4 2018.

M. Parker and B. D. Bryant, “Lamarckian neuroevolution
for visual control in the quake ii environment,” 2009
IEEE Congress on Evolutionary Computation, pp. 2630—
2637, 2009.

J. Ortega, N. Shaker, J. Togelius, and G. N. Yannakakis,
“Imitating human playing styles in super mario bros,’
Entertainment Computing, vol. 4, pp. 93—-104, 4 2013.
G. Martinez-Arellano, R. Cant, and D. Woods, “Creating
ai characters for fighting games using genetic program-
ming,” IEEE Transactions on Computational Intelligence
and Al in Games, vol. 9, pp. 423434, 12 2017.

M. Weeks and D. Binnion, “Training a neural network
controlled non-playing character with previous output
awareness,” Proceedings of the 2019 ACM Southeast
Conference, pp. 202-205, 4 2019.

